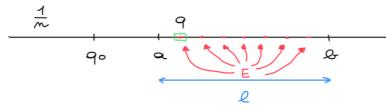
· Q E DENSO IN R

Jiano a ER, b ER, a < b. Ollora Jq EQ: a < q < b.

DIMOSTRAZIONE



Seelgo $q_0 \in Q$, $q_0 < \alpha$ e poro fore questa seelta perelà esistemo retrionali arhitratiomenta piecoli. Lia $l = b - \alpha > 0$ quindi la lungletta del segmento AB. Seelao $m \in M : 1/m < l$ e basta ele n > l. Inoltre notare ele $1/m \in Q$. Definisco $E := \{m \in M : q_0 + m/m > \alpha \}$, risulta ele $E \leq M$ e $E \neq \phi$ perelà $\exists m \in M : q_0 + m/m < \alpha \Rightarrow m/m > \alpha - q_0$ $\Rightarrow m > m(\alpha - q_0)$ e dunque $m \in E$.

Judtre
$$\exists ! \min E = : \overline{m} \pmod{\operatorname{direque}}$$

l'indice corrispondente $a \equiv \overline{e} \overline{m}$).
Definisco $q = q_0 + \overline{m}/n$ e devo dimestrore
ele $q \xrightarrow{e}$ un numero rorionale e $a < q < lr$.
Jutante $q = q_0 + \overline{m}/n \implies q \in Q$
 $\bigcap \qquad \bigcap$

Dimostriano ele q>a. Coiete m = min E => m e E e questo significa qo+m/m = q>a.

Dimostriano cle q < lr. Goiele $\overline{m} = \min E$ $\Rightarrow \overline{m} - 1 \notin E \Rightarrow q_0 + \frac{\overline{m} - 1}{m} \leq \alpha$ $\Rightarrow q_0 + \overline{m}/m - 1/m = q - 1/m \Rightarrow q - 1/m \leq \alpha$ $\Rightarrow q \leq \alpha + 1/m \leq \alpha + \ell = \alpha + \ell - \alpha = \ell \tau$

© Sbuch.it | All Rights Reserved